论文标题
扭曲的面包师地图
The twisted baker map
论文作者
论文摘要
作为提供对“涡旋动力学”的动手,基本理解的模型,我们介绍了一个分段线性的不可变形地图,称为扭曲的面包师地图。我们表明,具有复杂共轭特征值的双曲线排斥周期点,没有复杂的共轭特征值在相空间中同时密集。我们还表明,尽管其Lyapunov指数在Lyapunov指数中不均匀,但这两组与标准化的Lebesgue度量相对于归一化的Lebesgue度量。
As a model to provide a hands-on, elementary understanding of "vortex dynamics", we introduce a piecewise linear non-invertible map called a twisted baker map. We show that the set of hyperbolic repelling periodic points with complex conjugate eigenvalues and that without complex conjugate eigenvalues are simultaneously dense in the phase space. We also show that these two sets equidistribute with respect to the normalized Lebesgue measure, in spite of a non-uniformity in their Lyapunov exponents.