论文标题

在PDE,Resnets及其他地区的最佳控制中收费公路

Turnpike in optimal control of PDEs, ResNets, and beyond

论文作者

Geshkovski, Borjan, Zuazua, Enrique

论文摘要

现代宏观经济学的\ emph {收费公路财产}断言,如果经济计划者试图将经济从一个资本转移到另一个资本级别,那么最有效的途径,只要计划者有足够的时间,只要有足够的时间将股票转移到库存到最佳的固定道路或稳定的道路,然后允许沿最终的资本发展,直到最终的距离,直到最终的道路都可以迁移到所需的期限,几乎可以将其置于所需的范围内,这是在所需的范围内,是在范围内,在范围内,在范围内,在范围内,在范围内,在范围内又可以及时地付诸实践。在过去的十年中,收费公路属性也被证明是由其作为一种资源分配策略的部分动机,也证明了机械师产生的几类偏微分方程。在数学上进行形式化时,收费公路理论证实了经济学的见解:对于有限的时间范围中设定的最佳控制问题,最佳控制和相应状态在大多数时间内(通常是指数)(通常是指数级),除了初始和最后的时间和最终时间,与相关的最佳静止控制问题的最佳控制状态和相应的状态相关。特别是,随着时间的流逝,前者大多是恒定的。这一事实为渐近简化提供了严格的含义,即某些最佳控制问题在长期间隔内似乎享受,从而考虑了计算和应用的相应固定问题。我们回顾了过去十年中发展的理论的一部分 - 基础系统的可控性是一种重要成分,甚至可以用来设计简单的类似收费的策略,这些策略几乎是最佳的 - 并提出了一些新颖的应用,包括许多新颖的应用,包括许多其他汉密尔顿 - 雅各布斯 - 雅各布斯 - 雅各布斯 - 雅各布斯 - 贝尔曼·贝尔曼异常的表征,可通过深度学习进行估计。

The \emph{turnpike property} in contemporary macroeconomics asserts that if an economic planner seeks to move an economy from one level of capital to another, then the most efficient path, as long as the planner has enough time, is to rapidly move stock to a level close to the optimal stationary or constant path, then allow for capital to develop along that path until the desired term is nearly reached, at which point the stock ought to be moved to the final target. Motivated in part by its nature as a resource allocation strategy, over the past decade, the turnpike property has also been shown to hold for several classes of partial differential equations arising in mechanics. When formalized mathematically, the turnpike theory corroborates the insights from economics: for an optimal control problem set in a finite-time horizon, optimal controls and corresponding states, are close (often exponentially), during most of the time, except near the initial and final time, to the optimal control and corresponding state for the associated stationary optimal control problem. In particular, the former are mostly constant over time. This fact provides a rigorous meaning to the asymptotic simplification that some optimal control problems appear to enjoy over long time intervals, allowing the consideration of the corresponding stationary problem for computing and applications. We review a slice of the theory developed over the past decade --the controllability of the underlying system is an important ingredient, and can even be used to devise simple turnpike-like strategies which are nearly optimal--, and present several novel applications, including, among many others, the characterization of Hamilton-Jacobi-Bellman asymptotics, and stability estimates in deep learning via residual neural networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源