论文标题

非高斯镜头功率光谱的可能性

Non-Gaussian likelihood of weak lensing power spectra

论文作者

Hall, Alex, Taylor, Andy

论文摘要

由于其二次性质,弱透镜波动的功率光谱具有非高斯分布。在小尺度上,中心极限定理起着高斯化这种分布的作用,但是由于重力崩溃而引起的信号中的非高斯性正在增加,并且可能性的功能形式尚不清楚。传统上,分析假定具有非线性的高斯可能性,并将其纳入协方差矩阵中。在这里,我们提供了基于这一假设的理论。我们首次计算到基础信号中非高斯性的角功率光谱分布的领先校正,并研究向高斯性的过渡。我们的表达式对于任意数量的相关图有效,并在信号中存在弱(但任意)非高斯性的情况下纠正WishArt分布。令人惊讶的是,所得分布不等于Edgeworth的扩展。领先的效应是按通常的三光谱术语扩大协方差矩阵,其偏斜偏度由Trispectrum和Bispectrum的正方形提出。使用对数正态透镜图,我们证明了我们的可能性独特能够模拟大型和轻度的非线性尺度。我们提供易于计算的统计数据,以量化非高斯校正的大小。我们表明,在小的非线性尺度上,可以将完整的非高斯可能性准确地建模为高斯。在大的角度上,镜头信号中的非线性赋予了可忽略不计的可能性,该可能性在全套的情况下采取了欲望表。我们的形式主义同样适用于任何预计的领域。

The power spectrum of weak lensing fluctuations has a non-Gaussian distribution due to its quadratic nature. On small scales the Central Limit Theorem acts to Gaussianize this distribution but non-Gaussianity in the signal due to gravitational collapse is increasing and the functional form of the likelihood is unclear. Analyses have traditionally assumed a Gaussian likelihood with non-linearity incorporated into the covariance matrix; here we provide the theory underpinning this assumption. We calculate, for the first time, the leading-order correction to the distribution of angular power spectra from non-Gaussianity in the underlying signal and study the transition to Gaussianity. Our expressions are valid for an arbitrary number of correlated maps and correct the Wishart distribution in the presence of weak (but otherwise arbitrary) non-Gaussianity in the signal. Surprisingly, the resulting distribution is not equivalent to an Edgeworth expansion. The leading-order effect is to broaden the covariance matrix by the usual trispectrum term, with residual skewness sourced by the trispectrum and the square of the bispectrum. Using lognormal lensing maps we demonstrate that our likelihood is uniquely able to model both large and mildly non-linear scales. We provide easy-to-compute statistics to quantify the size of the non-Gaussian corrections. We show that the full non-Gaussian likelihood can be accurately modelled as a Gaussian on small, non-linear scales. On large angular scales non-linearity in the lensing signal imparts a negligible correction to the likelihood, which takes the Wishart form in the full-sky case. Our formalism is equally applicable to any kind of projected field.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源