论文标题
晶格正常亚组的尤其者
Commensurators of normal subgroups of lattices
论文作者
论文摘要
我们研究了一个关于具有密集型剂量的半圣像谎言组的离散亚组算术的格林伯格·肖尔姆(Greenberg-Shalom)的问题。我们对晶格的正常亚组积极回答这个问题。这概括了第二作者的结果和T. koberda的某些正常亚组在SO(N,1)和SU(N,1)中的某些正常亚组。
We study a question of Greenberg-Shalom concerning arithmeticity of discrete subgroups of semisimple Lie groups with dense commensurators. We answer this question positively for normal subgroups of lattices. This generalizes a result of the second author and T. Koberda for certain normal subgroups of arithmetic lattices in SO(n,1) and SU(n,1).