论文标题

Maxwell-Scalar理论的BPS方程和解决方案

BPS equations and solutions for Maxwell-scalar theory

论文作者

Morris, J. R.

论文摘要

能量最小化的BPS方程和解决方案是在Maxwell-Scalar理论中获得的一类模型,其中将Abelian电荷浸入了实际标量场的有效介电中。一阶BPS方程是使用Atmaja和Ramadhan引入的直接壳方法开发的。标量场的辅助功能的使用允许标量电势显示出速度不稳定性。因此,发现非物质标量孤子在电荷周围形成。为(1)在平坦的Minkowski背景中提供点充电或球体提供了示例和解决方案,以及(2)Reissner-Nordstrom背景中的过度充电的紧凑型物体。此处为前(Minkowski)案例提供的解决方案恢复了先前获得的解决方案,而后者解决方案是新的BPS解决方案。

Energy minimizing BPS equations and solutions are obtained for a class of models in Maxwell-scalar theory, where an abelian electric charge is immersed in an effective dielectric of a real scalar field. The first order BPS equations are developed using the straightforward on-shell method introduced by Atmaja and Ramadhan. Employment of an auxiliary function of the scalar field allows a scalar potential that displays a tachyonic instability. Consequently, a nontopological scalar soliton is found to form around the charge. Examples and solutions are provided for (1) a point charge or sphere in a flat Minkowski background, and (2) an overcharged compact object in a Reissner-Nordstrom background. The solutions presented here for the former (Minkowski) case recover those that have been previously obtained, while the latter solutions are new BPS solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源