论文标题
跨域高光谱图像表示的自我监督对比度学习
Self-supervised Contrastive Learning for Cross-domain Hyperspectral Image Representation
论文作者
论文摘要
最近,自我监督的学习引起了人们的关注,因为它具有出色的不使用语义标签而获得有意义的分类任务表示的有意义的表示。本文介绍了一个自我监督的学习框架,适用于固有挑战性注释的高光谱图像。提出的框架体系结构利用了交叉域CNN,允许从具有不同光谱特征和无像素级注释的不同高光谱图像中学习表示。在框架中,通过对比度学习学习了跨域表示,其中同一图像中的相邻光谱向量聚集在包含多个高光谱图像的通用表示空间中。相反,不同高光谱图像中的光谱向量分为空间中的不同簇。为了验证通过对比学习有效地转移到下游任务中,我们对高光谱图像执行分类任务。实验结果证明了所提出的自我监督表示的优势,而不是从头开始训练的模型或其他转移学习方法。
Recently, self-supervised learning has attracted attention due to its remarkable ability to acquire meaningful representations for classification tasks without using semantic labels. This paper introduces a self-supervised learning framework suitable for hyperspectral images that are inherently challenging to annotate. The proposed framework architecture leverages cross-domain CNN, allowing for learning representations from different hyperspectral images with varying spectral characteristics and no pixel-level annotation. In the framework, cross-domain representations are learned via contrastive learning where neighboring spectral vectors in the same image are clustered together in a common representation space encompassing multiple hyperspectral images. In contrast, spectral vectors in different hyperspectral images are separated into distinct clusters in the space. To verify that the learned representation through contrastive learning is effectively transferred into a downstream task, we perform a classification task on hyperspectral images. The experimental results demonstrate the advantage of the proposed self-supervised representation over models trained from scratch or other transfer learning methods.