论文标题

级联辩护:研究多种公平增强干预措施的累积效应

Cascaded Debiasing: Studying the Cumulative Effect of Multiple Fairness-Enhancing Interventions

论文作者

Ghai, Bhavya, Mishra, Mihir, Mueller, Klaus

论文摘要

了解机器学习(ML)管道不同阶段的多重公平性增强干预措施的累积效应是公平文献的关键和毫无疑问的方面。这些知识对于数据科学家/ML从业人员设计公平的ML管道可能很有价值。本文通过在4个基准数据集中进行了60种干预措施,9个公平指标(准确性和F1分数)的大量认可,迈出了探索这一领域的第一步。我们定量分析实验数据,以衡量多种干预措施对公平,公用事业和人口群体的影响。我们发现,采用多种干预措施会导致更好的公平性和效用低于总体干预措施。但是,添加更多的干预措施并不总是会导致更好的公平或更差的公用事业。获得高性能(F1得分)以及高公平性的可能性随大的干预措施增加。不利的一面是,我们发现增强公平的干预措施可能会对不同的人口群体,尤其是特权群体产生负面影响。这项研究强调了对新的公平指标的必要性,这些指标是对不同人口群体的影响,除了群体之间的差异。最后,我们提供了一系列干预措施的列表,这些干预措施最适合不同的公平和公用事业指标,以帮助设计公平的ML管道。

Understanding the cumulative effect of multiple fairness enhancing interventions at different stages of the machine learning (ML) pipeline is a critical and underexplored facet of the fairness literature. Such knowledge can be valuable to data scientists/ML practitioners in designing fair ML pipelines. This paper takes the first step in exploring this area by undertaking an extensive empirical study comprising 60 combinations of interventions, 9 fairness metrics, 2 utility metrics (Accuracy and F1 Score) across 4 benchmark datasets. We quantitatively analyze the experimental data to measure the impact of multiple interventions on fairness, utility and population groups. We found that applying multiple interventions results in better fairness and lower utility than individual interventions on aggregate. However, adding more interventions do no always result in better fairness or worse utility. The likelihood of achieving high performance (F1 Score) along with high fairness increases with larger number of interventions. On the downside, we found that fairness-enhancing interventions can negatively impact different population groups, especially the privileged group. This study highlights the need for new fairness metrics that account for the impact on different population groups apart from just the disparity between groups. Lastly, we offer a list of combinations of interventions that perform best for different fairness and utility metrics to aid the design of fair ML pipelines.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源