论文标题

多变量时间序列数据中的异常检测的对比预测编码

Contrastive predictive coding for Anomaly Detection in Multi-variate Time Series Data

论文作者

Pranavan, Theivendiram, Sim, Terence, Ambikapathi, Arulmurugan, Ramasamy, Savitha

论文摘要

多变量时间序列(MVTS)数据中的异常检测是一个巨大的挑战,因为它需要同时表示多个变量之间的长期时间依赖性和相关性。通常,通过一次对一个依赖性进行建模来打破复杂性来解决。在本文中,我们通过对比度预测编码(TRL-CPC)提出了一个时间序列的代表性学习,以在MVTS数据中进行异常检测。首先,我们共同优化编码器,自动回归器和非线性转换函数,以有效地了解MVTS数据集的表示形式,以预测未来的趋势。必须注意的是,上下文向量代表了MTV中的观察窗口。接下来,通过这些上下文向量的非线性转换获得的后瞬间的潜在表示与多变量的编码器的潜在表示形成对比,从而最大程度地提高了阳性对的密度。因此,TRL-CPC有助于建模健康信号模式的参数的时间依赖性和相关性。最后,将潜在表示拟合到高斯评分函数中以检测异常。针对SOTA异常检测方法的三个MVT数据集评估所提出的TRL-CPC的评估显示了TRL-CPC的优势。

Anomaly detection in multi-variate time series (MVTS) data is a huge challenge as it requires simultaneous representation of long term temporal dependencies and correlations across multiple variables. More often, this is solved by breaking the complexity through modeling one dependency at a time. In this paper, we propose a Time-series Representational Learning through Contrastive Predictive Coding (TRL-CPC) towards anomaly detection in MVTS data. First, we jointly optimize an encoder, an auto-regressor and a non-linear transformation function to effectively learn the representations of the MVTS data sets, for predicting future trends. It must be noted that the context vectors are representative of the observation window in the MTVS. Next, the latent representations for the succeeding instants obtained through non-linear transformations of these context vectors, are contrasted with the latent representations of the encoder for the multi-variables such that the density for the positive pair is maximized. Thus, the TRL-CPC helps to model the temporal dependencies and the correlations of the parameters for a healthy signal pattern. Finally, fitting the latent representations are fit into a Gaussian scoring function to detect anomalies. Evaluation of the proposed TRL-CPC on three MVTS data sets against SOTA anomaly detection methods shows the superiority of TRL-CPC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源