论文标题

域对抗空间 - 周期网络:可转移的框架,用于整个城市的短期流量预测

Domain Adversarial Spatial-Temporal Network: A Transferable Framework for Short-term Traffic Forecasting across Cities

论文作者

Tang, Yihong, Qu, Ao, Chow, Andy H. F., Lam, William H. K., Wong, S. C., Ma, Wei

论文摘要

准确的实时流量预测对于智能运输系统(ITS)至关重要,它是各种智能移动应用程序的基石。尽管该研究领域以深度学习为主,但最近的研究表明,开发新模型结构的准确性提高正变得边缘。取而代之的是,我们设想可以通过在具有不同数据分布和网络拓扑的城市之间转移“与预测相关的知识”来实现改进。为此,本文旨在提出一个新型的可转移流量预测框架:域对抗时空网络(DASTNET)。 DastNet已在多个源网络上进行了预训练,并通过目标网络的流量数据进行了微调。具体而言,我们利用图表表示学习和对抗域的适应技术来学习域不变的节点嵌入,这些嵌入了这些嵌入,这些嵌入将进一步合并以建模时间流量数据。据我们所知,我们是第一个使用对抗性多域改编来解决网络范围的流量预测问题的人。 DastNet始终优于三个基准数据集上的所有最新基线方法。训练有素的Dastnet用于香港的新交通探测器,并且可以在可用的探测器可用时立即(一天之内)提供准确的交通预测。总体而言,这项研究提出了一种增强流量预测方法的替代方法,并为缺乏历史流量数据的城市提供了实际含义。

Accurate real-time traffic forecast is critical for intelligent transportation systems (ITS) and it serves as the cornerstone of various smart mobility applications. Though this research area is dominated by deep learning, recent studies indicate that the accuracy improvement by developing new model structures is becoming marginal. Instead, we envision that the improvement can be achieved by transferring the "forecasting-related knowledge" across cities with different data distributions and network topologies. To this end, this paper aims to propose a novel transferable traffic forecasting framework: Domain Adversarial Spatial-Temporal Network (DASTNet). DASTNet is pre-trained on multiple source networks and fine-tuned with the target network's traffic data. Specifically, we leverage the graph representation learning and adversarial domain adaptation techniques to learn the domain-invariant node embeddings, which are further incorporated to model the temporal traffic data. To the best of our knowledge, we are the first to employ adversarial multi-domain adaptation for network-wide traffic forecasting problems. DASTNet consistently outperforms all state-of-the-art baseline methods on three benchmark datasets. The trained DASTNet is applied to Hong Kong's new traffic detectors, and accurate traffic predictions can be delivered immediately (within one day) when the detector is available. Overall, this study suggests an alternative to enhance the traffic forecasting methods and provides practical implications for cities lacking historical traffic data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源