论文标题

与Chebyshev近似图的图表上的卷积神经网络,重新审视

Convolutional Neural Networks on Graphs with Chebyshev Approximation, Revisited

论文作者

He, Mingguo, Wei, Zhewei, Wen, Ji-Rong

论文摘要

设计光谱卷积网络是图形学习中的一个具有挑战性的问题。早期尝试之一Chebnet使用Chebyshev多项式近似光谱图卷积。 GCN通过仅利用前两个Chebyshev多项式来简化Chebnet,同时仍然在现实世界数据集上表现优于它。 GPR-GNN和BERNNET表明,在学习频谱图卷积方面,单一和伯恩斯坦基地也优于Chebyshev的基础。在近似理论领域中,这种结论是违反直觉的,在近似理论的领域中,Chebyshev多项式实现了近似函数的最佳收敛速率。 在本文中,我们重新审视了用Chebyshev多项式近似光谱图卷积的问题。我们表明,Chebnet的劣质性能主要是由于Chebnet近似分析滤波器功能所学到的非法系数,这导致过度拟合。然后,我们提出了Chebnetii,这是一种基于Chebyshev插值的新型GNN模型,可以增强原始的Chebyshev多项式近似,同时减少Runge现象。我们进行了一项广泛的实验研究,以证明Chebnetii可以学习任意图形卷积,并在全面和半监督的节点分类任务中取得卓越的性能。最值得注意的是,我们将Chebnetii缩放到十亿个ogbn-papers100m的图表,表明基于光谱的GNN的性能较高。我们的代码可在https://github.com/ivam-he/chebnetii上找到。

Designing spectral convolutional networks is a challenging problem in graph learning. ChebNet, one of the early attempts, approximates the spectral graph convolutions using Chebyshev polynomials. GCN simplifies ChebNet by utilizing only the first two Chebyshev polynomials while still outperforming it on real-world datasets. GPR-GNN and BernNet demonstrate that the Monomial and Bernstein bases also outperform the Chebyshev basis in terms of learning the spectral graph convolutions. Such conclusions are counter-intuitive in the field of approximation theory, where it is established that the Chebyshev polynomial achieves the optimum convergent rate for approximating a function. In this paper, we revisit the problem of approximating the spectral graph convolutions with Chebyshev polynomials. We show that ChebNet's inferior performance is primarily due to illegal coefficients learnt by ChebNet approximating analytic filter functions, which leads to over-fitting. We then propose ChebNetII, a new GNN model based on Chebyshev interpolation, which enhances the original Chebyshev polynomial approximation while reducing the Runge phenomenon. We conducted an extensive experimental study to demonstrate that ChebNetII can learn arbitrary graph convolutions and achieve superior performance in both full- and semi-supervised node classification tasks. Most notably, we scale ChebNetII to a billion graph ogbn-papers100M, showing that spectral-based GNNs have superior performance. Our code is available at https://github.com/ivam-he/ChebNetII.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源