论文标题

金属伪影降低使用3D低剂量上颌面CBCT建模的口腔内扫描数据

Metal Artifact Reduction with Intra-Oral Scan Data for 3D Low Dose Maxillofacial CBCT Modeling

论文作者

Hyun, Chang Min, Bayaraa, Taigyntuya, Yun, Hye Sun, Jang, Tae Jun, Park, Hyoung Suk, Seo, Jin Keun

论文摘要

低剂量牙科锥束计算机断层扫描(CBCT)已越来越多地用于颌面建模。然而,金属插入物的存在,例如植入物,牙冠和牙齿填充物,在CBCT图像中引起严重的条纹和阴影伪像,以及牙齿的形态结构的丧失,从而阻止了骨骼的准确分段。提出了一种两阶段的金属伪像减少方法,以精确3D低剂量的上颌面CBCT建模,其中关键思想是从口腔内扫描数据中利用明确的牙齿形状的先验信息,其采集不需要任何额外的辐射暴露。在第一阶段,采用图像到图像深度学习网络来减轻与金属相关的伪像。为了提高学习能力,拟议的网络旨在利用口腔内扫描数据作为侧输入,并对辅助牙齿分割进行多任务学习。在第二阶段,通过从第一阶段校正的牙科CBCT图像中分割骨骼来构建一个3D颌面模型。为了精确的骨分割,应用加权阈值,其中确定加权区域取决于口腔内扫描数据的几何形状。因为在临床实践中获得了无金属艺术和金属伪像的牙科CBCT图像的配对训练数据集具有挑战性,因此引入了一种自动的方法,一种根据CBCT物理模型生成逼真的数据集的一种自动方法。数值模拟和临床实验显示了所提出的方法的可行性,该方法利用了3D低剂量上颌面CBCT模型中的口腔内扫描数据的优势。

Low-dose dental cone beam computed tomography (CBCT) has been increasingly used for maxillofacial modeling. However, the presence of metallic inserts, such as implants, crowns, and dental filling, causes severe streaking and shading artifacts in a CBCT image and loss of the morphological structures of the teeth, which consequently prevents accurate segmentation of bones. A two-stage metal artifact reduction method is proposed for accurate 3D low-dose maxillofacial CBCT modeling, where a key idea is to utilize explicit tooth shape prior information from intra-oral scan data whose acquisition does not require any extra radiation exposure. In the first stage, an image-to-image deep learning network is employed to mitigate metal-related artifacts. To improve the learning ability, the proposed network is designed to take advantage of the intra-oral scan data as side-inputs and perform multi-task learning of auxiliary tooth segmentation. In the second stage, a 3D maxillofacial model is constructed by segmenting the bones from the dental CBCT image corrected in the first stage. For accurate bone segmentation, weighted thresholding is applied, wherein the weighting region is determined depending on the geometry of the intra-oral scan data. Because acquiring a paired training dataset of metal-artifact-free and metal artifact-affected dental CBCT images is challenging in clinical practice, an automatic method of generating a realistic dataset according to the CBCT physics model is introduced. Numerical simulations and clinical experiments show the feasibility of the proposed method, which takes advantage of tooth surface information from intra-oral scan data in 3D low dose maxillofacial CBCT modeling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源