论文标题

平面图和平面线性正常$λ$ - 具有连通性条件的双线

Bijections between planar maps and planar linear normal $λ$-terms with connectivity condition

论文作者

Fang, Wenjie

论文摘要

线性$λ$ terms的枚举最近引起了很多关注,部分原因是它们与组合图的链接。 Zeilberger and Giorgetti(2015)在平面线性$λ$ - terms和Planar Maps之间进行了递归培训,当将其仅限于2个连接的$λ$ terms(即没有封闭的子函数)时,它们会导致无用的无用平面图。受这一限制的启发,Zeilberger and Reed(2019)猜想3连接的平面线性正常$λ$ terms具有与两部分平面图相同的计数公式。在本文中,我们通过在这两个家庭之间进行直接培养来解决这一猜想。此外,使用类似的方法,我们在平面线性正常$λ$ terms和Planar Maps之间进行了直接的培养,其限制到2相连的$λ$ terms会导致无环平面地图。即使在二倍地图上,这种培养物似乎与Zeilberger和Giorgetti的培训不同。我们还探索了我们的列举后果。

The enumeration of linear $λ$-terms has attracted quite some attention recently, partly due to their link to combinatorial maps. Zeilberger and Giorgetti (2015) gave a recursive bijection between planar linear normal $λ$-terms and planar maps, which, when restricted to 2-connected $λ$-terms (i.e., without closed sub-terms), leads to bridgeless planar maps. Inspired by this restriction, Zeilberger and Reed (2019) conjectured that 3-connected planar linear normal $λ$-terms have the same counting formula as bipartite planar maps. In this article, we settle this conjecture by giving a direct bijection between these two families. Furthermore, using a similar approach, we give a direct bijection between planar linear normal $λ$-terms and planar maps, whose restriction to 2-connected $λ$-terms leads to loopless planar maps. This bijection seems different from that of Zeilberger and Giorgetti, even after taking the map dual. We also explore enumerative consequences of our bijections.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源