论文标题
有限体积的无效现场理论,用于具有可区分编程的少数核系统
Finite-Volume Pionless Effective Field Theory for Few-Nucleon Systems with Differentiable Programming
论文作者
论文摘要
有限体积无效的有效场理论提供了一个有效的框架,用于推断在晶格QCD中以有限体积计算的核光谱和基质元件,并为无数原子数较大的核。在这项工作中,可以证明如何通过使用可区分的编程优化的一组相关的高斯波函数来实现此框架,并通过解决通用特征值问题的解决方案进行了优化。该方法比基于相同形式的高斯波触点的变异方法的随机实现表明,这种方法的效率要高得多,从而产生了地面波形的准确表示,术语较小。代表效率允许将这种计算扩展到比以前的工作更大的系统。通过计算原子数$ a \ in \ in \ {2,3,4 \} $中的原子数量$ a \ in有限体积,与质量QCD计算相匹配的QCD计算$m_π= 806 $ MEV,以及Infinite-volomume-volicume field理论的$ a \ a \ ar \ ar \ y i v in v = 806 $ mev = 806 $ a {2,2,2.2这个匹配。
Finite-volume pionless effective field theory provides an efficient framework for the extrapolation of nuclear spectra and matrix elements calculated at finite volume in lattice QCD to infinite volume, and to nuclei with larger atomic number. In this work, it is demonstrated how this framework may be implemented via a set of correlated Gaussian wavefunctions optimised using differentiable programming and via solution of a generalised eigenvalue problem. This approach is shown to be significantly more efficient than a stochastic implementation of the variational method based on the same form of correlated Gaussian wavefunctions, yielding comparably accurate representations of the ground-state wavefunctions with an order of magnitude fewer terms. The efficiency of representation allows such calculations to be extended to larger systems than in previous work. The method is demonstrated through calculations of the binding energies of nuclei with atomic number $A\in\{2,3,4\}$ in finite volume, matched to lattice QCD calculations at quark masses corresponding to $m_π=806$ MeV, and infinite-volume effective field theory calculations of $A\in\{2,3,4,5,6\}$ systems based on this matching.