论文标题

宇宙学告诉我们有关热率暗物质的质量?

What does cosmology tell us about the mass of thermal-relic dark matter?

论文作者

An, Rui, Gluscevic, Vera, Calabrese, Erminia, Hill, J. Colin

论文摘要

光热耦合暗物质的存在会影响大爆炸核合成期间的早期膨胀历史和光元素的产生。具体而言,将其歼灭到标准模型粒子中的暗物质可以修改宇宙中的有效数量$ n_ \ mathrm {eff} $,以及产生的buring bbn的丰度。这些数量反过来影响宇宙微波背景(CMB)各向异性。我们介绍了Atacama Cosmology望远镜(ACT)和South Pole望远镜(SPT)的小规模温度和极化CMB各向异性的首次联合分析,以及Planck数据以及最近对氦气和氘的最新原始丰度测量值,以对光热透明深色深度深色深度深色质量进行全面的界限。我们考虑了一系列模型,包括将其耦合到光子和标准模型中微子的暗物质。我们发现,ACT,SPT和Planck的组合通常会导致对暗物质的最严格的质量限制,该暗物质与以前的Planck分析相对于中微子伴侣,将下微子的质量限制为中微子,将下限提高了40%-80%。另一方面,由于$ y_ \ mathrm {p} $的首选值的变化和$ y_ \ n_ \ mathrm {eff} $驱动的$ y_ \ mathrm {p} $,因此添加ACT和SPT会导致在电磁耦合粒子上的结合略有弱。将所有CMB测量值与原始丰度测量结果相结合,我们将所有型号的质量排除在$ \ sim $ 4 MEV以下$ \ sim $ 4 MEV。我们表明,允许新的相对论物种可以削弱暗物质的质量界限,并以最多的数量级或更大的数量级将其伴侣与光子融合在一起。最后,我们讨论了下一代CMB实验的覆盖范围,以探测热遗物暗物质的质量。

The presence of light thermally coupled dark matter affects early expansion history and production of light elements during the Big Bang Nucleosynthesis. Specifically, dark matter that annihilates into Standard Model particles can modify the effective number of light species in the universe $N_\mathrm{eff}$, as well as the abundance of light elements created buring BBN. These quantities in turn affect the cosmic microwave background (CMB) anisotropy. We present the first joint analysis of small-scale temperature and polarization CMB anisotropy from Atacama Cosmology Telescope (ACT) and South Pole Telescope (SPT), together with Planck data and the recent primordial abundance measurements of helium and deuterium to place comprehensive bounds on the mass of light thermal-relic dark matter. We consider a range of models, including dark matter that couples to photons and Standard-Model neutrinos. We find that the combination of ACT, SPT, and Planck generally leads to the most stringent mass constraint for dark matter that couples to neutrinos, improving the lower limit by 40%-80%, with respect to previous Planck analyses. On the other hand, the addition of ACT and SPT leads to a slightly weaker bound on electromagnetically coupled particles, due to a shift in the preferred values of $Y_\mathrm{p}$ and $N_\mathrm{eff}$ driven by the ground based experiments. Combining all CMB measurements with primordial abundance measurements, we rule out masses below $\sim$4 MeV at 95% confidence, for all models. We show that allowing for new relativistic species can weaken the mass bounds for dark matter that couples to photons by up to an order of magnitude or more. Finally, we discuss the reach of the next generation of the CMB experiments in terms of probing the mass of the thermal relic dark matter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源