论文标题

通过基于知识的规则和肺结节的自我适应校正,一种粗到精细的形态学方法

A Coarse-to-fine Morphological Approach With Knowledge-based Rules and Self-adapting Correction for Lung Nodules Segmentation

论文作者

Fu, Xinliang, Zheng, Jiayin, Mai, Juanyun, Shao, Yanbo, Wang, Minghao, Li, Linyu, Diao, Zhaoqi, Chen, Yulong, Xiao, Jianyu, You, Jian, Yin, Airu, Yang, Yang, Qiu, Xiangcheng, Tao, Jinsheng, Wang, Bo, Ji, Hua

论文摘要

精确概述结节的分割模块是计算机辅助诊断(CAD)系统的关键步骤。这样一个模块中最具挑战性的部分是如何实现分割的高精度,尤其是对于并置,非固体和小结节。在这项研究中,我们提出了一种粗到精细的方法,该方法可以通过新颖的自我适应校正算法极大地提高阈值方法性能,并有效地消除了具有明确定义的基于知识的原理的嘈杂像素。与最近强大的形态基准相比,我们的算法,通过结合数据集特征,在公共LIDC-IDRI数据集(DSC 0.699)和我们的私人LC015数据集(DSC 0.760)上实现最先进的性能,这与SOTA Deep Learning基于基于基于的模型模型的表演紧密相关。此外,与大多数可用的形态学方法不同,只能准确地分割隔离和良好的结节,我们方法的精度完全独立于结节类型或直径,证明其适用性和通用性。

The segmentation module which precisely outlines the nodules is a crucial step in a computer-aided diagnosis(CAD) system. The most challenging part of such a module is how to achieve high accuracy of the segmentation, especially for the juxtapleural, non-solid and small nodules. In this research, we present a coarse-to-fine methodology that greatly improves the thresholding method performance with a novel self-adapting correction algorithm and effectively removes noisy pixels with well-defined knowledge-based principles. Compared with recent strong morphological baselines, our algorithm, by combining dataset features, achieves state-of-the-art performance on both the public LIDC-IDRI dataset (DSC 0.699) and our private LC015 dataset (DSC 0.760) which closely approaches the SOTA deep learning-based models' performances. Furthermore, unlike most available morphological methods that can only segment the isolated and well-circumscribed nodules accurately, the precision of our method is totally independent of the nodule type or diameter, proving its applicability and generality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源