论文标题
封闭的RICCI流动以渐近锥形收缩剂建模的奇异性
Closed Ricci Flows with Singularities Modeled on Asymptotically Conical Shrinkers
论文作者
论文摘要
鉴于渐近,缩小的梯度Ricci Soliton,我们表明存在RICCI流动溶液在封闭的歧管上,该溶液形成在给定孤子上模拟的有限时间奇异性。不需要对孤子的对称性或卡勒假设。证明提供了对奇异性形成的精确渐近描述。
Given an asymptotically conical, shrinking, gradient Ricci soliton, we show that there exists a Ricci flow solution on a closed manifold that forms a finite-time singularity modeled on the given soliton. No symmetry or Kahler assumptions on the soliton are required. The proof provides a precise asymptotic description of the singularity formation.