论文标题

广告/bcft和岛岛的曲率重力

AdS/BCFT and Island for curvature-squared gravity

论文作者

Hu, Qi-Lin, Li, Dongqi, Miao, Rong-Xin, Zeng, Yu-Qian

论文摘要

在本文中,我们研究了曲率方重力的广告/BCFT。为了热身,我们从高斯 - 骨网重力开始。我们得出应力张量的一个点函数,并表明与位移算子规范相关的中心电荷对符合因果关系约束的耦合呈阳性。此外,通过将无效的能量条件施加在世界末日的勃朗尼,我们证明了高斯重力的全息g理论。这纠正了文献中错误的观点,该观点声称全息g理论被违反了高斯 - 骨网的重力。作为副产品,我们在一般维度中获得边界熵和A型边界中心电荷。我们还研究了通用曲率方方重性的ADS/BCFT。我们发现,如果一个人对所有引力模式施加了Neumann边界条件,则对于Brane的形状而言,这太过限制了,双重BCFT是微不足道的。取而代之的是,我们建议对巨大的重力施加Dirichlet边界条件,同时为无质量重力施加诺伊曼边界条件。通过这种方式,我们获得了应力张量和定义明确的中心电荷的非平凡形状依赖性。特别是,全息g理论是通过一般曲率方方的重力来满足的。最后,我们讨论了该岛,并表明可以为高斯重力恢复页面曲线。有趣的是,在符合因果关系约束的一个耦合范围内的页面曲线有零级相变。将讨论概括为ADS/CFT的全息纠缠熵和全息复杂性,我们获得了高斯 - 骨网耦合的新约束,该耦合比因果关系约束强。

In this paper, we investigate AdS/BCFT for curvature-squared gravity. To warm up, we start with Gauss-Bonnet gravity. We derive the one point function of stress tensor and show that the central charge related to the norm of displacement operator is positive for the couplings obeying causality constraints. Furthermore, by imposing the null energy condition on the end-of-the-world brane, we prove the holographic g-theorem for Gauss-Bonnet gravity. This corrects a wrong point of view in the literature, which claims that the holographic g-theorem is violated for Gauss-Bonnet gravity. As a by-product, we obtain the boundary entropy and A-type boundary central charges in general dimensions. We also study AdS/BCFT for general curvature-squared gravity. We find that it is too restrictive for the shape of the brane and the dual BCFT is trivial if one imposes Neumann boundary conditions for all of the gravitational modes. Instead, we propose to impose Dirichlet boundary condition for the massive graviton, while imposing Neumann boundary condition for the massless graviton. In this way, we obtain non-trivial shape dependence of stress tensor and well-defined central charges. In particular, the holographic g-theorem is satisfied by general curvature-squared gravity. Finally, we discuss the island and show that the Page curve can be recovered for Gauss-Bonnet gravity. Interestingly, there are zeroth-order phase transitions for the Page curve within one range of couplings obeying causality constraints. Generalizing the discussions to holographic entanglement entropy and holographic complexity in AdS/CFT, we get new constraints for the Gauss-Bonnet coupling, which is stronger than the causality constraint.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源