论文标题
混合量子退火,用于大于QPU晶格结构问题
Hybrid quantum annealing for larger-than-QPU lattice-structured problems
论文作者
论文摘要
执行退火算法的量子处理单元(QPU)在优化和仿真应用程序中表现出了希望。混合算法是较大规模应用的自然桥梁。我们提出了一种简单有效的方法,用于解决比QPU大的晶格结构化优化问题。将性能与模拟退火和有希望的结果进行了比较,并显示了所用D-WAVE QPU的产生的函数。
Quantum processing units (QPUs) executing annealing algorithms have shown promise in optimization and simulation applications. Hybrid algorithms are a natural bridge to additional applications of larger scale. We present a straightforward and effective method for solving larger-than-QPU lattice-structured Ising optimization problems. Performance is compared against simulated annealing with promising results, and improvement is shown as a function of the generation of D-Wave QPU used.