论文标题
低信心样品对域适应很重要
Low-confidence Samples Matter for Domain Adaptation
论文作者
论文摘要
域的适应性(DA)旨在将知识从富含标签的源域转移到相关但标签范围的目标域。常规的DA策略是将两个域的特征分布对齐。最近,越来越多的研究集中在自我训练或其他半监督算法上,以探索目标域的数据结构。但是,其中大部分在很大程度上取决于自信样本,以建立可靠的伪标签,原型或集群中心。以这种方式代表目标数据结构将忽略巨大的低信仰样本,从而导致次优的可传递性偏向于类似于源域的样品。为了克服这个问题,我们通过处理低信心样本提出了一种新颖的对比学习方法,该方法鼓励模型通过实例歧视过程利用目标数据结构。具体来说,我们仅使用低信心样本创建正面和负对,然后用分类器权重来代表原始特征,而不是直接利用它们,这可以更好地编码特定于任务的语义信息。此外,我们结合了跨域混合,以增加提出的对比损失。因此,通过对跨域中的中间表示形式进行对比学习,可以很好地弥合域间隙。我们在无监督和半监督的DA设置中评估了所提出的方法,并在基准上进行了广泛的实验结果表明,我们的方法是有效的,可以实现最先进的性能。该代码可以在https://github.com/zhyx12/mixlrco中找到。
Domain adaptation (DA) aims to transfer knowledge from a label-rich source domain to a related but label-scarce target domain. The conventional DA strategy is to align the feature distributions of the two domains. Recently, increasing researches have focused on self-training or other semi-supervised algorithms to explore the data structure of the target domain. However, the bulk of them depend largely on confident samples in order to build reliable pseudo labels, prototypes or cluster centers. Representing the target data structure in such a way would overlook the huge low-confidence samples, resulting in sub-optimal transferability that is biased towards the samples similar to the source domain. To overcome this issue, we propose a novel contrastive learning method by processing low-confidence samples, which encourages the model to make use of the target data structure through the instance discrimination process. To be specific, we create positive and negative pairs only using low-confidence samples, and then re-represent the original features with the classifier weights rather than directly utilizing them, which can better encode the task-specific semantic information. Furthermore, we combine cross-domain mixup to augment the proposed contrastive loss. Consequently, the domain gap can be well bridged through contrastive learning of intermediate representations across domains. We evaluate the proposed method in both unsupervised and semi-supervised DA settings, and extensive experimental results on benchmarks reveal that our method is effective and achieves state-of-the-art performance. The code can be found in https://github.com/zhyx12/MixLRCo.