论文标题

无参数层的学习功能

Learning Features with Parameter-Free Layers

论文作者

Han, Dongyoon, Yoo, YoungJoon, Kim, Beomyoung, Heo, Byeongho

论文摘要

诸如卷积构建块之类的可训练层是通过学习参数通过连续的空间操作来捕获全球上下文的标准网络设计选择。在设计有效的网络时,诸如深度卷积之类的可训练层是参数和失败数量的效率来源,但是在实践中,模型速度几乎没有改善。本文认为,简单的内置无参数操作可以是替代网络体系结构中空间操作的有效训练层的有利替代方法。我们旨在打破将构件的空间操作组织为可训练层的刻板印象。提供了基于层级层面的研究层和神经结构搜索的层级研究的广泛实验分析,以研究无参数操作(例如Max-Pool)是否功能。这些研究最终为我们提供了重新设计网络体系结构的简单而有效的想法,在这种情况下,无参数的操作被大量用作主要的构建块,而无需牺牲模型的准确性。 Imagenet数据集的实验结果表明,具有无参数操作的网络体系结构可以在模型速度,参数和拖船的数量方面享有进一步效率的优势。代码和Imagenet预测的模型可在https://github.com/naver-ai/pflayer上找到。

Trainable layers such as convolutional building blocks are the standard network design choices by learning parameters to capture the global context through successive spatial operations. When designing an efficient network, trainable layers such as the depthwise convolution is the source of efficiency in the number of parameters and FLOPs, but there was little improvement to the model speed in practice. This paper argues that simple built-in parameter-free operations can be a favorable alternative to the efficient trainable layers replacing spatial operations in a network architecture. We aim to break the stereotype of organizing the spatial operations of building blocks into trainable layers. Extensive experimental analyses based on layer-level studies with fully-trained models and neural architecture searches are provided to investigate whether parameter-free operations such as the max-pool are functional. The studies eventually give us a simple yet effective idea for redesigning network architectures, where the parameter-free operations are heavily used as the main building block without sacrificing the model accuracy as much. Experimental results on the ImageNet dataset demonstrate that the network architectures with parameter-free operations could enjoy the advantages of further efficiency in terms of model speed, the number of the parameters, and FLOPs. Code and ImageNet pretrained models are available at https://github.com/naver-ai/PfLayer.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源