论文标题
结逆转与理性的一致性
Knot reversal and rational concordance
论文作者
论文摘要
我们给出了一个无限的结系列,与它们的逆转无关。更准确地说,如果R表示由弦乐逆转和固定(R)引起的有理结一致性组的QC的相互作用表示固定在QC中R下的结的子组,则QC/FIX(R)包含一个无限的等级亚组。作为推论,我们表明存在一个结k,因此对于每对coprime整数P和Q,k的(p,q)可与k的反向(p,q)相反(p,q)。
We give an infinite family of knots that are not rationally concordant to their reverses. More precisely, if R denotes the involution of the rational knot concordance group QC induced by string reversal and Fix(R) denotes the subgroup of knots fixed under R in QC, then QC/Fix(R) contains an infinite rank subgroup. As a corollary, we show that there exists a knot K such that for every pair of coprime integers p and q, the (p,q)-cable of K is not concordant to the reverse of the (p,q)-cable of K.