论文标题
通过范围分析,对一般神经隐式表面的深度:保证对一般神经隐性表面的查询
Spelunking the Deep: Guaranteed Queries on General Neural Implicit Surfaces via Range Analysis
论文作者
论文摘要
神经隐式表示将表面编码为应用于空间坐标的神经网络的水平集,已证明对优化,压缩和生成3D几何形状非常有效。尽管这些表示易于拟合,但尚不清楚如何最好地评估形状上的几何查询,例如与射线相交或找到最接近的点。主要的方法是鼓励网络具有签名的距离属性。但是,该属性通常仅持有大约导致鲁棒性问题,并且仅在培训结束时持有,从而抑制了在损失功能中使用查询的使用。取而代之的是,这项工作提出了一种新的方法,可以直接对广泛的现有架构进行一般神经隐式功能进行查询。我们的关键工具是使用自动算术规则将范围分析应用于神经网络,以限制网络在区域上的输出。我们对神经网络的范围分析进行了研究,并确定了非常有效的仿射算术变体。我们使用所得边界来开发几何查询,包括射线铸造,交叉测试,构建空间层次结构,快速网格提取,最接近的点评估,评估批量特性等。我们的查询可以在GPU上有效评估,即使在随机定位的网络上也可以提供具体的准确性,从而可以在培训目标及其他方面使用。我们还展示了对反渲染的初步应用。
Neural implicit representations, which encode a surface as the level set of a neural network applied to spatial coordinates, have proven to be remarkably effective for optimizing, compressing, and generating 3D geometry. Although these representations are easy to fit, it is not clear how to best evaluate geometric queries on the shape, such as intersecting against a ray or finding a closest point. The predominant approach is to encourage the network to have a signed distance property. However, this property typically holds only approximately, leading to robustness issues, and holds only at the conclusion of training, inhibiting the use of queries in loss functions. Instead, this work presents a new approach to perform queries directly on general neural implicit functions for a wide range of existing architectures. Our key tool is the application of range analysis to neural networks, using automatic arithmetic rules to bound the output of a network over a region; we conduct a study of range analysis on neural networks, and identify variants of affine arithmetic which are highly effective. We use the resulting bounds to develop geometric queries including ray casting, intersection testing, constructing spatial hierarchies, fast mesh extraction, closest-point evaluation, evaluating bulk properties, and more. Our queries can be efficiently evaluated on GPUs, and offer concrete accuracy guarantees even on randomly-initialized networks, enabling their use in training objectives and beyond. We also show a preliminary application to inverse rendering.