论文标题
用于视网膜模型功能评估的机器学习方法
Machine Learning Method for Functional Assessment of Retinal Models
论文作者
论文摘要
视网膜假体领域的挑战激发了视网膜模型的发展,以准确模拟视网膜神经节细胞(RGC)反应。视网膜假体的目的是使盲人能够解决复杂的真实生活视觉任务。在本文中,我们介绍了视网膜模型的功能评估(FA),该评估描述了评估视网膜模型在视觉理解任务上的性能的概念。我们提出了一种用于FA的机器学习方法:我们使用视网膜模型生成的RGC响应为传统的机器学习分类器提供,以求解对象和数字识别任务(CIFAR-10,MNIST,MNIST,时尚MNIST,Imagenette)。我们检查了关键的FA方面,包括FA的性能如何取决于任务,如何最佳地为分类器提供RGC响应以及输出神经元的数量与模型的准确性如何相关。为了增加输出神经元的数量,我们通过分裂并将其馈入视网膜模型来操纵输入图像,我们发现图像分裂并不能显着提高模型的准确性。我们还表明,数据集结构的差异导致视网膜模型的性能很大(MNIST和时尚MNIST超过80%的精度,而CIFAR-10和Imagenette的差异达到了〜40%)。此外,在标准评估中表现更好的视网膜模型,即更准确地预测RGC响应,在FA中的表现也更好。但是,与标准评估不同,可以在比较视觉感知质量的情况下直接解释FA结果。
Challenges in the field of retinal prostheses motivate the development of retinal models to accurately simulate Retinal Ganglion Cells (RGCs) responses. The goal of retinal prostheses is to enable blind individuals to solve complex, reallife visual tasks. In this paper, we introduce the functional assessment (FA) of retinal models, which describes the concept of evaluating the performance of retinal models on visual understanding tasks. We present a machine learning method for FA: we feed traditional machine learning classifiers with RGC responses generated by retinal models, to solve object and digit recognition tasks (CIFAR-10, MNIST, Fashion MNIST, Imagenette). We examined critical FA aspects, including how the performance of FA depends on the task, how to optimally feed RGC responses to the classifiers and how the number of output neurons correlates with the model's accuracy. To increase the number of output neurons, we manipulated input images - by splitting and then feeding them to the retinal model and we found that image splitting does not significantly improve the model's accuracy. We also show that differences in the structure of datasets result in largely divergent performance of the retinal model (MNIST and Fashion MNIST exceeded 80% accuracy, while CIFAR-10 and Imagenette achieved ~40%). Furthermore, retinal models which perform better in standard evaluation, i.e. more accurately predict RGC response, perform better in FA as well. However, unlike standard evaluation, FA results can be straightforwardly interpreted in the context of comparing the quality of visual perception.