论文标题
用集成电流载有电线的表面离子陷阱制造,使高磁场梯度能够
Fabrication of Surface Ion Traps with Integrated Current Carrying Wires enabling High Magnetic Field Gradients
论文作者
论文摘要
量子计算机的主要挑战是量子门的可扩展执行。在被困的离子量子计算机中解决此问题的一种方法是基于静态磁场梯度和全局微波场的量子门实现。在本文中,我们介绍了表面离子陷阱的制造,其集成的铜电流载有电线嵌入了离子陷阱电极下方的底物内,能够产生高磁场梯度。室温下铜层的测量表电阻为1.12 m $ω$/平方英尺,足以合并复杂的设计,而在高电流处没有过多的功率散发,从而导致热失落。在40 K的温度下,薄板电阻降至20.9 $μω$/平方英尺,可施加剩余电阻比的下限。可以应用13 a的连续电流,从而在离子位置处于离子位置的模拟磁场梯度为144 t/m,该位置的模拟磁场梯度从特定的防空表面的125 $ m $ m $ m $ m,对于特定的抗trap trap表面,特定的防空平行平行平行的电线是我们的设计。
A major challenge for quantum computers is the scalable simultaneous execution of quantum gates. One approach to address this in trapped ion quantum computers is the implementation of quantum gates based on static magnetic field gradients and global microwave fields. In this paper, we present the fabrication of surface ion traps with integrated copper current carrying wires embedded inside the substrate below the ion trap electrodes, capable of generating high magnetic field gradients. The copper layer's measured sheet resistance of 1.12 m$Ω$/sq at room temperature is sufficiently low to incorporate complex designs, without excessive power dissipation at high currents causing a thermal runaway. At a temperature of 40 K the sheet resistance drops to 20.9 $μΩ$/sq giving a lower limit for the residual resistance ratio of 100. Continuous currents of 13 A can be applied, resulting in a simulated magnetic field gradient of 144 T/m at the ion position, which is 125 $μ$m from the trap surface for the particular anti-parallel wire pair in our design.