论文标题

带有方向和RSRP的光束管理使用深度学习超越5G系统

Beam Management with Orientation and RSRP using Deep Learning for Beyond 5G Systems

论文作者

Nguyen, Khuong N., Ali, Anum, Mo, Jianhua, Ng, Boon Loong, Va, Vutha, Zhang, Jianzhong Charlie

论文摘要

梁管理(BM),即查找和维护合适的发射和接收光束对的过程可能具有挑战性,尤其是在高度动态的情况下。侧面传感器的侧面信息(例如,方向)可以帮助用户设备(UE)BM。在这项工作中,我们使用来自惯性测量单元(IMU)的定向信息进行有效的BM。我们使用数据驱动的策略,该策略将接收到的参考信号(RSRP)与使用复发性神经网络(RNN)的方向信息融合在一起。仿真结果表明,所提出的策略的性能要比常规BM和方向辅助的BM策略好得多,该策略在另一项研究中利用了粒子过滤器。具体而言,提出的数据驱动策略可提高梁预测准确性高达34%,并在UE方向迅速变化时,将RSRP的平均值提高到4.2 dB。

Beam management (BM), i.e., the process of finding and maintaining a suitable transmit and receive beam pair, can be challenging, particularly in highly dynamic scenarios. Side-information, e.g., orientation, from on-board sensors can assist the user equipment (UE) BM. In this work, we use the orientation information coming from the inertial measurement unit (IMU) for effective BM. We use a data-driven strategy that fuses the reference signal received power (RSRP) with orientation information using a recurrent neural network (RNN). Simulation results show that the proposed strategy performs much better than the conventional BM and an orientation-assisted BM strategy that utilizes particle filter in another study. Specifically, the proposed data-driven strategy improves the beam-prediction accuracy up to 34% and increases mean RSRP by up to 4.2 dB when the UE orientation changes quickly.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源