论文标题
基本功能,出生学和强大的惠特尼融合
Cardinal Functions, Bornologies and Strong Whitney convergence
论文作者
论文摘要
令$ c(x)$为公制空间$(x,d)$上的所有实际有价值的连续功能的集合。卡斯塔(Caserta)介绍了强大的惠特尼(Whitney)在bornology上的拓扑,以$ c(x)$ [A。 Caserta,Strong Whitney Converence,Filomat,2012],这是Beer-Levi在[Beer-Levi,强统一的连续性,J。Math的强大均匀融合对出生学上的拓扑的概括。肛门。 Appl。,2009]。本文的目的是研究功能空间的各种基本不变性$ C(x)$,并具有强大的惠特尼和惠特尼融合的拓扑结构。在此过程中,我们提供了文献中许多结果的更简单证明。最终,还研究了$ C(x)$的强惠特尼融合与强统一收敛之间的基本不变性之间的关系。
Let $C(X)$ be the set of all real valued continuous functions on a metric space $(X,d)$. Caserta introduced the topology of strong Whitney convergence on bornology for $C(X)$ in [A. Caserta, Strong Whitney convergence, Filomat, 2012], which is a generalization of the topology of strong uniform convergence on bornology introduced by Beer-Levi in [Beer-Levi, Strong uniform continuity, J. Math. Anal. Appl., 2009]. The purpose of this paper is to study various cardinal invariants of the function space $C(X)$ endowed with the topologies of strong Whitney and Whitney convergence on bornology. In the process, we present simpler proofs of a number of results from the literature. In the end, relationships between cardinal invariants of strong Whitney convergence and strong uniform convergence on $C(X)$ have also been studied.