论文标题
客观检查器:通过补丁掩饰,可证明可抵抗补丁隐藏攻击的稳健对象检测
ObjectSeeker: Certifiably Robust Object Detection against Patch Hiding Attacks via Patch-agnostic Masking
论文作者
论文摘要
已发现对象检测器在诸如自动驾驶汽车之类的安全系统中广泛部署,并且很容易受到补丁隐藏攻击的影响。攻击者可以使用单个可以物理变化的对抗贴片来使对象检测器错过受害者对象的检测并破坏对象检测应用程序的功能。在本文中,我们提出了与补丁隐藏攻击的可靠对象检测确定性的对象。对客体的关键洞察力是补丁 - 敏捷的掩码:我们的目标是掩盖整个对抗补丁而不知道补丁的形状,大小和位置。这种掩盖操作中和对抗性效果,并允许任何香草对象检测器安全地检测到蒙版图像上的对象。值得注意的是,我们可以以可认证的方式评估客体求的鲁棒性:我们制定认证程序,以正式确定客观求职者是否可以针对威胁模型中的任何白盒适应性攻击来检测某些对象,从而实现可证明的鲁棒性。我们的实验表明,在先前的工作中,可认证的鲁棒性以及高清洁性能(与未防御模型相比约为1%),证明可认证的鲁棒性的显着(约10%-40%,相对〜2-6倍)。
Object detectors, which are widely deployed in security-critical systems such as autonomous vehicles, have been found vulnerable to patch hiding attacks. An attacker can use a single physically-realizable adversarial patch to make the object detector miss the detection of victim objects and undermine the functionality of object detection applications. In this paper, we propose ObjectSeeker for certifiably robust object detection against patch hiding attacks. The key insight in ObjectSeeker is patch-agnostic masking: we aim to mask out the entire adversarial patch without knowing the shape, size, and location of the patch. This masking operation neutralizes the adversarial effect and allows any vanilla object detector to safely detect objects on the masked images. Remarkably, we can evaluate ObjectSeeker's robustness in a certifiable manner: we develop a certification procedure to formally determine if ObjectSeeker can detect certain objects against any white-box adaptive attack within the threat model, achieving certifiable robustness. Our experiments demonstrate a significant (~10%-40% absolute and ~2-6x relative) improvement in certifiable robustness over the prior work, as well as high clean performance (~1% drop compared with undefended models).