论文标题
在最小的较高属填充物上
On minimal higher genus fillings
论文作者
论文摘要
在本文中,我们证明,如果$(m,g)$是$ g $ g $定向的表面,则具有单个边界组件$ s^1 $,并且如果$(d,g_0)$是一张光盘,以至于内部点通过唯一的大地测量学和独特的地点连接 $$ d _ {(d,g_0)}(x,y)\ geq d _ {(m,g)}(x,y)$ $ \ textrm {aild}(d,g_0)。$$
In this article, we prove that if $(M,g)$ is a genus $G$ orientable surface with a single boundary component $S^1$, and if $(D,g_0)$ is a disc such that interior points are connected by unique geodesics and $$d_{(D,g_0)}(x,y) \geq d_{(M,g)}(x,y)$$ for all $x,y \in \partial M = \partial D$, then $$(1 + \frac{2 G}π) \textrm{Area}(M,g) \geq \textrm{Area}(D,g_0).$$