论文标题

理解基于域相似性和几乎没有射击困难的跨域学习

Understanding Cross-Domain Few-Shot Learning Based on Domain Similarity and Few-Shot Difficulty

论文作者

Oh, Jaehoon, Kim, Sungnyun, Ho, Namgyu, Kim, Jin-Hwa, Song, Hwanjun, Yun, Se-Young

论文摘要

跨域几乎没有学习(CD-FSL)引起了越来越多的关注来处理源和目标域之间的巨大差异,这是现实世界中的重要关注点。为了克服这些巨大的差异,最近的工作考虑了在训练阶段中利用来自目标域的小规模的未标记数据。除了对源域的监督预训练之外,该数据还可以在目标域进行自我监督的预训练。在本文中,我们根据域相似性和目标域的难度很少,从经验研究哪些预训练是首选的。我们发现,当目标域与源域不同时,或者目标域本身的难度较低时,自我监督的预训练预训练对监督预训练的性能变得很大。我们进一步设计了两种培训方案,即混合监督和两阶段学习,从而提高了性能。从这个角度来看,我们提出了六个针对CD-FSL的发现,这些发现得到了大量实验和分析的三个源和八个目标基准数据集的支持,域相似性的水平不同,几乎没有射击难度。我们的代码可在https://github.com/sungnyun/understanding-cdfsl上找到。

Cross-domain few-shot learning (CD-FSL) has drawn increasing attention for handling large differences between the source and target domains--an important concern in real-world scenarios. To overcome these large differences, recent works have considered exploiting small-scale unlabeled data from the target domain during the pre-training stage. This data enables self-supervised pre-training on the target domain, in addition to supervised pre-training on the source domain. In this paper, we empirically investigate which pre-training is preferred based on domain similarity and few-shot difficulty of the target domain. We discover that the performance gain of self-supervised pre-training over supervised pre-training becomes large when the target domain is dissimilar to the source domain, or the target domain itself has low few-shot difficulty. We further design two pre-training schemes, mixed-supervised and two-stage learning, that improve performance. In this light, we present six findings for CD-FSL, which are supported by extensive experiments and analyses on three source and eight target benchmark datasets with varying levels of domain similarity and few-shot difficulty. Our code is available at https://github.com/sungnyun/understanding-cdfsl.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源