论文标题

横向振荡气泡增强激光驱动的BETATRON X射线辐射产生

Transverse Oscillating Bubble Enhanced Laser-driven Betatron X-ray Radiation Generation

论文作者

Rakowski, Rafal, Zhang, Ping, Jensen, Kyle, Kettle, Brendan, Kawamoto, Tim, Banerjee, Sudeep, Fruhling, Colton, Golovin, Grigory, Haden, Daniel, Robinson, Matthew S., Umstadter, Donald, Shadwick, B. A., Fuchs, Matthias

论文摘要

超快的高亮性X射线脉冲对于广泛的研究证明是无价的。这种脉冲通常是通过使用大规模设施从相对论电子束发射的同步加速器发射生成的。最近,已经证明了基于激光效率加速(LWFA)电子束的紧凑型X射线源。特别是,激光驱动的源是通过等离子体加速器结构内的电子的横向振荡产生的,而辐射源(所谓的betatron振荡)可以使用相当简单的设置产生高度燃烧的X射线脉冲。在这里,我们在实验上展示了一种明显增强和控制LWFA驱动的Betatron X射线发射的参数的方法。随着我们新型的横向振荡气泡增强了BETATRON辐射(TOBE)方案,我们通过专门操纵Betatron振荡的幅度来显示产生的光子的数量显着增加。我们通过暂时激光脉冲形状和加速等离子体结构的精心策划演变来意识到这一点。这会导致对进行大振幅集体横向betatron振荡的电子外轴注射,从而导致辐射发射增加。我们的概念具有一种方法来优化特定应用的X射线参数,例如使用空间和时间原子分辨率或高级高分辨率成像方式进行的时间分辨研究,以及具有更高峰值和平均亮度的X射线梁的产生。

Ultrafast high-brightness X-ray pulses have proven invaluable for a broad range of research. Such pulses are typically generated via synchrotron emission from relativistic electron bunches using large-scale facilities. Recently, significantly more compact X-ray sources based on laser-wakefield accelerated (LWFA) electron beams have been demonstrated. In particular, laser-driven sources, where the radiation is generated by transverse oscillations of electrons within the plasma accelerator structure (so-called betatron oscillations) can generate highly-brilliant ultrashort X-ray pulses using a comparably simple setup. Here, we experimentally demonstrate a method to markedly enhance and control the parameters of LWFA-driven betatron X-ray emission. With our novel Transverse Oscillating Bubble Enhanced Betatron Radiation (TOBER) scheme, we show a significant increase in the number of generated photons by specifically manipulating the amplitude of the betatron oscillations. We realize this through an orchestrated evolution of the temporal laser pulse shape and the accelerating plasma structure. This leads to controlled off-axis injection of electrons that perform large-amplitude collective transverse betatron oscillations, resulting in increased radiation emission. Our concept holds the promise for a method to optimize the X-ray parameters for specific applications, such as time-resolved investigations with spatial and temporal atomic resolution or advanced high-resolution imaging modalities, and the generation of X-ray beams with even higher peak and average brightness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源