论文标题

基于多分辨率因子图的立体声对应算法

Multi-Resolution Factor Graph Based Stereo Correspondence Algorithm

论文作者

Shabanian, Hanieh, Balasubramanian, Madhusudhanan

论文摘要

从任意视图方向上的场景的密集深度图可以从场景多个低维视图之间的密集视图对应关系进行估算。这些低维视图对应关系取决于观点和场景之间的几何关系。确定密集的视图对应关系很困难,部分原因是场景中存在均匀区域,并且由于观点之间存在遮挡区域和照明差异。我们提出了一种新的基于多分辨率的基于图的立体声匹配算法(MR-FGS),该算法(MR-FGS)在视图之间以及差异估计中都利用内部和分辨率依赖性。所提出的框架允许在对应问题的多个分辨率之间交换信息,并且对于处理场景中较大的均匀区域非常有用。基于常用的性能指标,使用米德尔伯里立体声基准数据集中的立体声对定性和定量评估了MR-FGS算法。与最近开发的因子图模型(FGS)相比,MR-FGS算法提供了更准确的差异估计值,而无需常用的后处理程序称为左右一致性检查。因子图模型中的多分辨率依赖性约束可显着改善MR-FGS产生的差异图的深度边界的对比度。

A dense depth-map of a scene at an arbitrary view orientation can be estimated from dense view correspondences among multiple lower-dimensional views of the scene. These low-dimensional view correspondences are dependent on the geometrical relationship among the views and the scene. Determining dense view correspondences is difficult in part due to presence of homogeneous regions in the scene and due to presence of occluded regions and illumination differences among the views. We present a new multi-resolution factor graph-based stereo matching algorithm (MR-FGS) that utilizes both intra- and inter-resolution dependencies among the views as well as among the disparity estimates. The proposed framework allows exchange of information among multiple resolutions of the correspondence problem and is useful for handling larger homogeneous regions in a scene. The MR-FGS algorithm was evaluated qualitatively and quantitatively using stereo pairs in the Middlebury stereo benchmark dataset based on commonly used performance measures. When compared to a recently developed factor graph model (FGS), the MR-FGS algorithm provided more accurate disparity estimates without requiring the commonly used post-processing procedure known as the left-right consistency check. The multi-resolution dependency constraint within the factor-graph model significantly improved contrast along depth boundaries in the MR-FGS generated disparity maps.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源