论文标题
在一环基础转换中的简单规则
Simple Rules for Evanescent Operators in One-Loop Basis Transformations
论文作者
论文摘要
基础转换通常涉及FIEZ和其他仅在$ d = 4 $维度中有效的关系。但是,总的来说,为了保留这种身份,必须引入evanestent Operations。这样的evan灭操作员有助于单循环基础转换以及两环重新归一化组的运行。我们提出了一个简单的过程,即如何通过获得evanescent运算符引起的轮班来系统地在单循环级别上进行系统更改。作为一个例子,我们将此方法应用于从BMU(Buras,Misiak和Urban)基础的单循环基础转换,对NLO QCD计算有用,将其与SMEFT匹配中使用的JMS(Jenkins,Manohar和Stoffer)基础。
Basis transformations often involve Fierz and other relations which are only valid in $D=4$ dimensions. In general $D$ space-time dimensions however, evanescent operators have to be introduced, in order to preserve such identities. Such evanescent operators contribute to one-loop basis transformations as well as to two-loop renormalization group running. We present a simple procedure on how to systematically change basis at the one-loop level by obtaining shifts due to evanescent operators. As an example we apply this method to derive the one-loop basis transformation from the BMU (Buras, Misiak and Urban) basis useful for NLO QCD calculations, to the JMS (Jenkins, Manohar and Stoffer) basis used in the matching to the SMEFT.