论文标题
Mobius功能的自相关
Autocorrelation of the Mobius Function
论文作者
论文摘要
令$ x \ geq 1 $为大整数,让$μ:\ mathbb {n} \ longrightArrow \ { - 1,0,1,1 \} $为mobius函数。本文提出了自相关函数$ \ sum_ {n \ leq x}μ(n)μ(n+t)= o \ left(e^{ - c \ sqrt {\ log x}} \ right)$ the $ t \ ne 0 $ ate ne 0 $ c> 0 $ c> 0 $ c> 0。
Let $x\geq 1$ be a large integer, and let $μ:\mathbb{N}\longrightarrow\{-1,0,1\}$ be the Mobius function. This article proposes an effective asymptotic result for the autocorrelation function $\sum_{n \leq x} μ(n) μ(n+t) =O\left( e^{-c\sqrt{\log x}}\right) $, where $t\ne 0$ be a small fixed integer, and $c>0$ is a constant.