论文标题
VC-PCR:一种基于监督变量选择和聚类的预测方法
VC-PCR: A Prediction Method based on Supervised Variable Selection and Clustering
论文作者
论文摘要
当预测变量具有簇结构时,稀疏线性预测方法的预测准确性降低(例如,变量高度相关)。为了提高预测精度,已经提出了各种方法来从数据中识别可变簇,并将群集信息整合到稀疏的建模过程中。但是,这些方法都没有同时进行预测,可变选择和可变聚类的令人满意的性能。本文介绍了可变群集主组件回归(VC-PCR),这是一种预测方法,该方法旨在确定可变选择和可变聚类以解决此问题。使用真实和模拟数据的实验表明,与竞争对手方法相比,VC-PCR在存在聚类结构时可获得更好的预测,可变选择和聚类性能。
Sparse linear prediction methods suffer from decreased prediction accuracy when the predictor variables have cluster structure (e.g. there are highly correlated groups of variables). To improve prediction accuracy, various methods have been proposed to identify variable clusters from the data and integrate cluster information into a sparse modeling process. But none of these methods achieve satisfactory performance for prediction, variable selection and variable clustering simultaneously. This paper presents Variable Cluster Principal Component Regression (VC-PCR), a prediction method that supervises variable selection and variable clustering in order to solve this problem. Experiments with real and simulated data demonstrate that, compared to competitor methods, VC-PCR achieves better prediction, variable selection and clustering performance when cluster structure is present.