论文标题
无短标量头发定理用于光子流体模型中旋转声学黑洞
No-short scalar hair theorem for spinning acoustic black holes in a photon-fluid model
论文作者
论文摘要
最近已经揭示了光子流体模型的旋转黑洞可以支持声学“云”,即固定密度波动的空间正常径向特征函数由$(2+1)$ - 尺寸 - 尺寸klein klein-gordon方程的有效标量。在这种有趣的观察过程中,我们使用{\ it Analytical}技术,以证明与组成的声学黑人孔阵容云配置相关的无短发定理。特别是,事实证明,固定结合状态共旋转的声学标量云的有效长度从下面界定了一系列不等式$ r _ {\ text {hair}}> {1+ \ sqrt {1+ \ sqrt {5} \ r _ {\ text {h}}> r _ {\ text {null}} $,其中$ r _ {\ text {h}} $和$ r _ {\ text {null}} $分别是支撑黑洞的地平线,是均匀的黑洞和共同旋转的圆形的循环均匀的循环,并将其变形。时空。
It has recently been revealed that spinning black holes of the photon-fluid model can support acoustic `clouds', stationary density fluctuations whose spatially regular radial eigenfunctions are determined by the $(2+1)$-dimensional Klein-Gordon equation of an effective massive scalar field. Motivated by this intriguing observation, we use {\it analytical} techniques in order to prove a no-short hair theorem for the composed acoustic-black-hole-scalar-clouds configurations. In particular, it is proved that the effective lengths of the stationary bound-state co-rotating acoustic scalar clouds are bounded from below by the series of inequalities $r_{\text{hair}}>{1+\sqrt{5}\over{2}}\cdot r_{\text{H}}>r_{\text{null}}$, where $r_{\text{H}}$ and $r_{\text{null}}$ are respectively the horizon radius of the supporting black hole and the radius of the co-rotating null circular geodesic that characterizes the acoustic spinning black-hole spacetime.