论文标题

重新布线换取隔离的建议,以减少激进途径

Rewiring What-to-Watch-Next Recommendations to Reduce Radicalization Pathways

论文作者

Fabbri, Francesco, Wang, Yanhao, Bonchi, Francesco, Castillo, Carlos, Mathioudakis, Michael

论文摘要

推荐系统通常向用户的内容建议,类似于他们过去消费的内容。如果用户碰巧暴露于强烈两极化的内容,她可能会收到建议,这些建议可能会引导她走向越来越多的激进内容,最终被困在我们所谓的“激进化途径”中。在本文中,我们研究了使用基于图的方法来减轻激进途径的问题。具体而言,我们将“ What-to-watch-next”推荐程序的建议集建模为DRECOLULANT有向图,其中节点对应于内容项,链接到建议以及可能的用户会话路径。我们测量代表激进内容的节点的“隔离”评分是从该节点到代表非激进内容的任何节点的随机步行的预期长度。高隔离分数与将用户陷入激进途径的机会更大的机会相关。因此,我们通过选择少量边缘来“重新播种”来定义降低激进途径流行的问题,从而最大程度地减少所有激进节点之间的隔离得分的最高分数,同时保持建议的相关性。我们证明,找到重新布线的最佳建议集的问题是NP-HARD和NP-HARD在任何因素内近似。因此,我们将注意力转向启发式方法,并提出一种基于吸收的随机步行理论的有效而有效的贪婪算法。在视频和新闻建议的背景下,我们对现实世界数据集进行了实验证实了我们的提案的有效性。

Recommender systems typically suggest to users content similar to what they consumed in the past. If a user happens to be exposed to strongly polarized content, she might subsequently receive recommendations which may steer her towards more and more radicalized content, eventually being trapped in what we call a "radicalization pathway". In this paper, we study the problem of mitigating radicalization pathways using a graph-based approach. Specifically, we model the set of recommendations of a "what-to-watch-next" recommender as a d-regular directed graph where nodes correspond to content items, links to recommendations, and paths to possible user sessions. We measure the "segregation" score of a node representing radicalized content as the expected length of a random walk from that node to any node representing non-radicalized content. High segregation scores are associated to larger chances to get users trapped in radicalization pathways. Hence, we define the problem of reducing the prevalence of radicalization pathways by selecting a small number of edges to "rewire", so to minimize the maximum of segregation scores among all radicalized nodes, while maintaining the relevance of the recommendations. We prove that the problem of finding the optimal set of recommendations to rewire is NP-hard and NP-hard to approximate within any factor. Therefore, we turn our attention to heuristics, and propose an efficient yet effective greedy algorithm based on the absorbing random walk theory. Our experiments on real-world datasets in the context of video and news recommendations confirm the effectiveness of our proposal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源