论文标题

基于机器学习的建模和优化,在用新开发的高度涂层碳化物工具的AISI D6钢努力转弯时

Machine learning based modelling and optimization in hard turning of AISI D6 steel with newly developed AlTiSiN coated carbide tool

论文作者

Das, A, Das, S R, Panda, J P, Dey, A, Gajrani, K K, Somani, N, Gupta, N

论文摘要

最近,机械和生产行业正面临着与向可持续制造转变的转变有关的越来越多的挑战。在本文中,加工是在干切割条件下进行的,新开发的涂层插入物在干切割条件下通过可伸缩的脉冲功率等离子体技术涂有覆有甲壳的碳纤维碳化物,并为不同的加工参数和输出响应生成了一个数据集。加工参数是速度,进料,切割深度和输出响应是表面粗糙度,切割力,火山口磨损长度,火山口磨损宽度和侧面磨损。从加工操作收集的数据用于开发基于机器学习(ML)的替代模型,以测试,评估和优化各种输入加工参数。不同的ML方法,例如多项式回归(PR),随机森林(RF)回归,梯度增强(GB)树和基于自适应的增强(AB)回归(AB)回归用于模拟AISI D6钢的硬加工中的不同输出响应。用于不同输出响应的替代模型用于为基于硬盘操作的加工参数的基于生发中心算法的优化准备复杂的目标函数。

In recent times Mechanical and Production industries are facing increasing challenges related to the shift toward sustainable manufacturing. In this article, machining was performed in dry cutting condition with a newly developed coated insert called AlTiSiN coated carbides coated through scalable pulsed power plasma technique in dry cutting condition and a dataset was generated for different machining parameters and output responses. The machining parameters are speed, feed, depth of cut and the output responses are surface roughness, cutting force, crater wear length, crater wear width, and flank wear. The data collected from the machining operation is used for the development of machine learning (ML) based surrogate models to test, evaluate and optimize various input machining parameters. Different ML approaches such as polynomial regression (PR), random forest (RF) regression, gradient boosted (GB) trees, and adaptive boosting (AB) based regression are used to model different output responses in the hard machining of AISI D6 steel. The surrogate models for different output responses are used to prepare a complex objective function for the germinal center algorithm-based optimization of the machining parameters of the hard turning operation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源