论文标题
图像通过有限维交换性半密布代数的广义高阶奇异值分解的近似
Approximation of Images via Generalized Higher Order Singular Value Decomposition over Finite-dimensional Commutative Semisimple Algebra
论文作者
论文摘要
在大数据的时代,通过单数值分解的图像近似近似。但是,单数值分解(SVD)仅用于订单两个数据,即矩阵。有必要将更高级输入的更高级输入到矩阵中,或将其分解为一系列订单两个切片,以解决具有SVD的多光谱图像和视频等高阶数据。高阶单数值分解(HOSVD)扩展了SVD,可以使用一些排名一的组件的总和近似更高阶数据。我们考虑将HOSVD推广到有限维度的代数上的问题。该代数(称为T-Algebra)概括了复数。代数的元素(称为T-Scalars)是固定尺寸的复数阵列。可以将矩阵和张量概括在T量标准上,然后扩展许多规范矩阵和张量算法,包括HOSVD,以获得更高的性能版本。 HOSVD的概括称为THOSVD。交替的算法可以进一步提高其近似多路数据的性能。 THOSVD还统一了广泛的主成分分析算法。为了利用T-Scalars进行近似图像利用广义算法的潜力,我们使用像素邻域策略将每个像素转换为“更深入”的T-Scalar。公开图像的实验表明,T型量表的广义算法,即Thosvd,与其规范对应物进行了优惠。
Low-rank approximation of images via singular value decomposition is well-received in the era of big data. However, singular value decomposition (SVD) is only for order-two data, i.e., matrices. It is necessary to flatten a higher order input into a matrix or break it into a series of order-two slices to tackle higher order data such as multispectral images and videos with the SVD. Higher order singular value decomposition (HOSVD) extends the SVD and can approximate higher order data using sums of a few rank-one components. We consider the problem of generalizing HOSVD over a finite dimensional commutative algebra. This algebra, referred to as a t-algebra, generalizes the field of complex numbers. The elements of the algebra, called t-scalars, are fix-sized arrays of complex numbers. One can generalize matrices and tensors over t-scalars and then extend many canonical matrix and tensor algorithms, including HOSVD, to obtain higher-performance versions. The generalization of HOSVD is called THOSVD. Its performance of approximating multi-way data can be further improved by an alternating algorithm. THOSVD also unifies a wide range of principal component analysis algorithms. To exploit the potential of generalized algorithms using t-scalars for approximating images, we use a pixel neighborhood strategy to convert each pixel to "deeper-order" t-scalar. Experiments on publicly available images show that the generalized algorithm over t-scalars, namely THOSVD, compares favorably with its canonical counterparts.