论文标题
双环图的诱导性的界限
Bounds On The Inducibility Of Double Loop Graphs
论文作者
论文摘要
在极端图理论领域,存在一个问题,该问题研究了任何$ n $ vertex Graph $ g $中$ k $ vertex图$ h $的最大诱导密度。这被称为\ emph {诱导性}的问题,该问题是由Pippenger和Golumbic在1975年首次引入的。在本文中,我们为\ emph {double loop graphs} of Cold $ k $的家族提供了新的上限。 $ k = 5 $获得的上限在确切诱导性的0.964506以内,并且以$ k = 6 $获得的上限在最著名的下限的3倍。
In the area of extremal graph theory, there exists a problem that investigates the maximum induced density of a $k$-vertex graph $H$ in any $n$-vertex graph $G$. This is known as the problem of \emph{inducibility} that was first introduced by Pippenger and Golumbic in 1975. In this paper, we give a new upper bound for the inducibility for a family of \emph{Double Loop Graphs} of order $k$. The upper bound obtained for order $k=5$ is within a factor of 0.964506 of the exact inducibility, and the upper bound obtained for $k=6$ is within a factor of 3 of the best known lower bound.