论文标题

在DNN中探索层次决策

Exploring layerwise decision making in DNNs

论文作者

Mouton, Coenraad, Davel, Marelie H.

论文摘要

虽然深层神经网络(DNN)已成为许多机器学习任务的标准架构,但它们的内部决策过程和一般的可解释性仍然知之甚少。相反,共同的决策树很容易解释,理论上可以很好地理解。我们表明,通过将节点的离散样品激活值编码为二进制表示,我们可以提取一个决策树,以解释在恢复的多层感知器(MLP)中说明每一层的分类过程。然后,我们将这些决策树与现有特征归因技术结合在一起,以产生模型每一层的解释。最后,我们提供了生成的解释,二进制编码的行为以及这些分析与神经网络训练过程中创建的样本分组之间的关系。

While deep neural networks (DNNs) have become a standard architecture for many machine learning tasks, their internal decision-making process and general interpretability is still poorly understood. Conversely, common decision trees are easily interpretable and theoretically well understood. We show that by encoding the discrete sample activation values of nodes as a binary representation, we are able to extract a decision tree explaining the classification procedure of each layer in a ReLU-activated multilayer perceptron (MLP). We then combine these decision trees with existing feature attribution techniques in order to produce an interpretation of each layer of a model. Finally, we provide an analysis of the generated interpretations, the behaviour of the binary encodings and how these relate to sample groupings created during the training process of the neural network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源