论文标题
Layoutenhancer:从不完美的数据中生成良好的室内布局
LayoutEnhancer: Generating Good Indoor Layouts from Imperfect Data
论文作者
论文摘要
我们解决了室内布局综合的问题,这是对计算机图形持续研究兴趣的话题。最新的作品使用数据驱动的生成方法取得了重大进展。但是,这些方法依赖于合适的数据集。实际上,数据集中可能不存在理想的布局属性,例如,数据中可能缺少特定的专家知识。我们提出了一种将专家知识(例如关于人体工程学的知识)与基于流行变压器体系结构的数据驱动器结合在一起的方法。知识作为可区分的标量函数,可以用作权重或损失函数中的其他术语。使用这些知识,即使数据集中不存在这些属性,也可以将合成的布局偏置以表现出理想的属性。我们的方法还可以减轻数据缺乏数据和缺陷的问题。我们的工作旨在改善生成机器学习,用于建模,并为设计师和业余爱好者提供内部布局创建问题的新颖工具。
We address the problem of indoor layout synthesis, which is a topic of continuing research interest in computer graphics. The newest works made significant progress using data-driven generative methods; however, these approaches rely on suitable datasets. In practice, desirable layout properties may not exist in a dataset, for instance, specific expert knowledge can be missing in the data. We propose a method that combines expert knowledge, for example, knowledge about ergonomics, with a data-driven generator based on the popular Transformer architecture. The knowledge is given as differentiable scalar functions, which can be used both as weights or as additional terms in the loss function. Using this knowledge, the synthesized layouts can be biased to exhibit desirable properties, even if these properties are not present in the dataset. Our approach can also alleviate problems of lack of data and imperfections in the data. Our work aims to improve generative machine learning for modeling and provide novel tools for designers and amateurs for the problem of interior layout creation.