论文标题
使用变异推理预测多孔金属中故障位置的杂化模型架构
A heteroencoder architecture for prediction of failure locations in porous metals using variational inference
论文作者
论文摘要
在这项工作中,我们采用编码器卷积神经网络来预测仅基于其初始孔隙率的多孔金属张力标本的故障位置。我们建模的过程是复杂的,从初始空隙核的发展,到饱和,最终导致失败。预测故障位置的目的提出了阶级失衡的极端情况,因为标本中的大多数材料都不会失败。为了应对这一挑战,我们开发并证明了基于数据和损失的正则化方法的有效性。由于故障位置对空隙的特定配置具有相当大的敏感性,因此我们还使用变异推理为神经网络预测提供不确定性。我们将确定性和贝叶斯卷积神经网络连接在理论层面上,以解释变异推断如何正常训练和预测。我们证明,由此产生的预测差异可有效地对任何给定标本中最有可能失败的位置进行排名。
In this work we employ an encoder-decoder convolutional neural network to predict the failure locations of porous metal tension specimens based only on their initial porosities. The process we model is complex, with a progression from initial void nucleation, to saturation, and ultimately failure. The objective of predicting failure locations presents an extreme case of class imbalance since most of the material in the specimens do not fail. In response to this challenge, we develop and demonstrate the effectiveness of data- and loss-based regularization methods. Since there is considerable sensitivity of the failure location to the particular configuration of voids, we also use variational inference to provide uncertainties for the neural network predictions. We connect the deterministic and Bayesian convolutional neural networks at a theoretical level to explain how variational inference regularizes the training and predictions. We demonstrate that the resulting predicted variances are effective in ranking the locations that are most likely to fail in any given specimen.