论文标题
几何局部系统在非常一般的曲线和异构体上
Geometric local systems on very general curves and isomonodromy
论文作者
论文摘要
我们表明,在适当的一般$ n $ n $ point $ g $的属性曲线上,几何原点的非等级本地系统的最低等级至少为$ 2 \ sqrt {g+1} $。我们将此结果应用于解决Esnault-Kerz和Budur-Wang的猜想。主要的输入是对异构粒细胞变形下平面矢量束的稳定性的分析,该特性还回答了Biswas,heu和hurtubise的问题。
We show that the minimum rank of a non-isotrivial local system of geometric origin, on a suitably general $n$-pointed curve of genus $g$, is at least $2\sqrt{g+1}$. We apply this result to resolve conjectures of Esnault-Kerz and Budur-Wang. The main input is an analysis of stability properties of flat vector bundles under isomonodromic deformation, which additionally answers questions of Biswas, Heu, and Hurtubise.