论文标题
Hydra:3D场景图构造和优化的实时空间感知系统
Hydra: A Real-time Spatial Perception System for 3D Scene Graph Construction and Optimization
论文作者
论文摘要
3D场景图最近已成为3D环境的强大高级表示。 3D场景图将环境描述为一个分层图,其中节点在多个级别的抽象和边缘表示概念之间的关系。尽管3D场景图可以用作机器人的高级“心理模型”,但如何实时建立如此丰富的代表仍然是未知的领域。本文描述了一个实时空间感知系统,这是一套算法,可实时从传感器数据构建3D场景图。我们的第一个贡献是开发实时算法,以在机器人探索环境时逐步构建场景图的层。这些算法在当前机器人位置周围构建了本地欧几里得签名的距离功能(ESDF),从ESDF中提取位置的拓扑图,然后使用受社区检测技术启发的方法将其分为房间。我们的第二个贡献是研究3D场景图中的循环闭合检测和优化。我们表明,3D场景图允许定义层次描述符以进行循环闭合检测;我们的描述符在场景图中捕获跨层的统计信息,从低级视觉外观到有关对象和位置的摘要统计信息。然后,我们提出了第一种算法来优化3D场景图,以响应循环封闭。我们的方法依靠嵌入式变形图同时校正场景图的所有层。我们将提出的空间感知系统实施到一个名为Hydra的架构中,该体系结合了快速的早期和中级感知过程与较慢的高级感知。我们在模拟和真实数据上评估了Hydra,并表明它能够以与批处理离线方法相当的准确性来重建3D场景图,尽管在线运行。
3D scene graphs have recently emerged as a powerful high-level representation of 3D environments. A 3D scene graph describes the environment as a layered graph where nodes represent spatial concepts at multiple levels of abstraction and edges represent relations between concepts. While 3D scene graphs can serve as an advanced "mental model" for robots, how to build such a rich representation in real-time is still uncharted territory. This paper describes a real-time Spatial Perception System, a suite of algorithms to build a 3D scene graph from sensor data in real-time. Our first contribution is to develop real-time algorithms to incrementally construct the layers of a scene graph as the robot explores the environment; these algorithms build a local Euclidean Signed Distance Function (ESDF) around the current robot location, extract a topological map of places from the ESDF, and then segment the places into rooms using an approach inspired by community-detection techniques. Our second contribution is to investigate loop closure detection and optimization in 3D scene graphs. We show that 3D scene graphs allow defining hierarchical descriptors for loop closure detection; our descriptors capture statistics across layers in the scene graph, ranging from low-level visual appearance to summary statistics about objects and places. We then propose the first algorithm to optimize a 3D scene graph in response to loop closures; our approach relies on embedded deformation graphs to simultaneously correct all layers of the scene graph. We implement the proposed Spatial Perception System into a architecture named Hydra, that combines fast early and mid-level perception processes with slower high-level perception. We evaluate Hydra on simulated and real data and show it is able to reconstruct 3D scene graphs with an accuracy comparable with batch offline methods despite running online.