论文标题
基于邻居相互作用的点击率通过图形遮盖率预测
Neighbour Interaction based Click-Through Rate Prediction via Graph-masked Transformer
论文作者
论文摘要
点击率(CTR)预测旨在估算用户单击项目的可能性,是在线广告的重要组成部分。现有方法主要尝试从用户的历史行为中挖掘用户兴趣,这些行为包含用户直接交互的项目。尽管这些方法取得了长足的进步,但通常会受到推荐系统的直接曝光和不活动相互作用的限制,因此无法挖掘所有潜在的用户利益。为了解决这些问题,我们提出了基于邻居相互作用的CTR预测(NI-CTR),该预测在异质信息网络(HIN)设置下考虑此任务。简而言之,基于邻居相互作用的CTR预测涉及HIN中目标用户项目对的本地邻域以预测其链接。为了指导当地邻里的表示形式,我们从明确和隐性的角度考虑了本地邻域节点之间的不同类型的相互作用,并提出了一种新颖的图形掩盖变压器(GMT),以有效地结合了这些相互作用,以产生目标用户对的高度代表性的嵌入。此外,为了提高针对邻居采样的模型鲁棒性,我们在嵌入式嵌入式上执行了一致性正规化损失。 我们对数百万个实例进行了两个现实世界数据集进行了广泛的实验,实验结果表明,我们所提出的方法的表现高于最先进的CTR模型。同时,全面的消融研究验证了我们模型每个组成部分的有效性。此外,我们已经在具有数十亿用户的微信官方帐户平台上部署了此框架。在线A/B测试表明,针对所有在线基线的平均CTR改进为21.9。
Click-Through Rate (CTR) prediction, which aims to estimate the probability that a user will click an item, is an essential component of online advertising. Existing methods mainly attempt to mine user interests from users' historical behaviours, which contain users' directly interacted items. Although these methods have made great progress, they are often limited by the recommender system's direct exposure and inactive interactions, and thus fail to mine all potential user interests. To tackle these problems, we propose Neighbor-Interaction based CTR prediction (NI-CTR), which considers this task under a Heterogeneous Information Network (HIN) setting. In short, Neighbor-Interaction based CTR prediction involves the local neighborhood of the target user-item pair in the HIN to predict their linkage. In order to guide the representation learning of the local neighbourhood, we further consider different kinds of interactions among the local neighborhood nodes from both explicit and implicit perspective, and propose a novel Graph-Masked Transformer (GMT) to effectively incorporates these kinds of interactions to produce highly representative embeddings for the target user-item pair. Moreover, in order to improve model robustness against neighbour sampling, we enforce a consistency regularization loss over the neighbourhood embedding. We conduct extensive experiments on two real-world datasets with millions of instances and the experimental results show that our proposed method outperforms state-of-the-art CTR models significantly. Meanwhile, the comprehensive ablation studies verify the effectiveness of every component of our model. Furthermore, we have deployed this framework on the WeChat Official Account Platform with billions of users. The online A/B tests demonstrate an average CTR improvement of 21.9 against all online baselines.