论文标题
最大操作员,与非对称Ornstein-Uhlenbeck操作员相关的Littlewood-Paley功能和变异操作员
Maximal operator, Littlewood-Paley functions and variation operators associated with nonsymmetric Ornstein-Uhlenbeck operators
论文作者
论文摘要
在本文中,我们为最大操作员,Littlewood-Paley功能和变异操作员建立了$ l^p $有限属性,涉及泊松半群和与非对称Ornstein-uhlenbeck运算符相关的回答操作员。我们将身份定义为协方差矩阵定义的Ornstein-uhlenbeck运算符,并具有由矩阵$-λ(i+r)$给出的漂移,为$λ> 0 $和$ r $ a a akew-adwhewaink-Adwhewaint Matrix。与这些Ornstein-Uhlenbeck操作员相关的半群是所有正常的Ornstein-Uhlenbeck半群的基本组成部分。
In this paper we establish $L^p$ boundedness properties for maximal operators, Littlewood-Paley functions and variation operators involving Poisson semigroups and resolvent operators associated with nonsymmetric Ornstein-Uhlenbeck operators. We consider the Ornstein-Uhlenbeck operators defined by the identity as the covariance matrix and having a drift given by the matrix $-λ(I+R)$, being $λ>0$ and $R$ a skew-adjoint matrix. The semigroup associated with these Ornstein-Uhlenbeck operators are the basic building blocks of all normal Ornstein-Uhlenbeck semigroups.