论文标题

最大操作员,与非对称Ornstein-Uhlenbeck操作员相关的Littlewood-Paley功能和变异操作员

Maximal operator, Littlewood-Paley functions and variation operators associated with nonsymmetric Ornstein-Uhlenbeck operators

论文作者

Almeida, Víctor, Betancor, Jorge J., Quijano, Pablo, Rodríguez-Mesa, Lourdes

论文摘要

在本文中,我们为最大操作员,Littlewood-Paley功能和变异操作员建立了$ l^p $有限属性,涉及泊松半群和与非对称Ornstein-uhlenbeck运算符相关的回答操作员。我们将身份定义为协方差矩阵定义的Ornstein-uhlenbeck运算符,并具有由矩阵$-λ(i+r)$给出的漂移,为$λ> 0 $和$ r $ a a akew-adwhewaink-Adwhewaint Matrix。与这些Ornstein-Uhlenbeck操作员相关的半群是所有正常的Ornstein-Uhlenbeck半群的基本组成部分。

In this paper we establish $L^p$ boundedness properties for maximal operators, Littlewood-Paley functions and variation operators involving Poisson semigroups and resolvent operators associated with nonsymmetric Ornstein-Uhlenbeck operators. We consider the Ornstein-Uhlenbeck operators defined by the identity as the covariance matrix and having a drift given by the matrix $-λ(I+R)$, being $λ>0$ and $R$ a skew-adjoint matrix. The semigroup associated with these Ornstein-Uhlenbeck operators are the basic building blocks of all normal Ornstein-Uhlenbeck semigroups.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源