论文标题

通过分组的顺序与并联训练的异质联邦学习

Heterogeneous Federated Learning via Grouped Sequential-to-Parallel Training

论文作者

Zeng, Shenglai, Li, Zonghang, Yu, Hongfang, He, Yihong, Xu, Zenglin, Niyato, Dusit, Yu, Han

论文摘要

联邦学习(FL)是一种快速增长的保护隐私的协作机器学习范式。在实际的FL应用中,来自每个数据的本地数据筒仓反映了本地使用模式。因此,数据所有者(又称FL客户端)之间数据分布的异质性。如果无法正确处理,这可能会导致模型性能退化。这项挑战激发了异类联邦学习的研究领域,目前仍然开放。在本文中,我们提出了一种数据异质性fl方法,即FedGSP,通过利用新颖的动态顺序与平行(STP)协作培训来应对这一挑战。 FedGSP将FL客户端分配给同质组,以最大程度地减少组之间的总分布差异,并通过在每回合中重新分配更多的组来提高并行性程度。它还与新型的集群间组(ICG)算法合并,以协助小组分配,该算法使用质心等效定理简化NP - 硬性分组问题以使其可解决。在非I.I.D上进行了广泛的实验。女性数据集。结果表明,与七种最先进的方法相比,FedGSP平均将准确性提高了3.7%,并将训练时间和通信开销降低了90%以上。

Federated learning (FL) is a rapidly growing privacy-preserving collaborative machine learning paradigm. In practical FL applications, local data from each data silo reflect local usage patterns. Therefore, there exists heterogeneity of data distributions among data owners (a.k.a. FL clients). If not handled properly, this can lead to model performance degradation. This challenge has inspired the research field of heterogeneous federated learning, which currently remains open. In this paper, we propose a data heterogeneity-robust FL approach, FedGSP, to address this challenge by leveraging on a novel concept of dynamic Sequential-to-Parallel (STP) collaborative training. FedGSP assigns FL clients to homogeneous groups to minimize the overall distribution divergence among groups, and increases the degree of parallelism by reassigning more groups in each round. It is also incorporated with a novel Inter-Cluster Grouping (ICG) algorithm to assist in group assignment, which uses the centroid equivalence theorem to simplify the NP-hard grouping problem to make it solvable. Extensive experiments have been conducted on the non-i.i.d. FEMNIST dataset. The results show that FedGSP improves the accuracy by 3.7% on average compared with seven state-of-the-art approaches, and reduces the training time and communication overhead by more than 90%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源