论文标题

两步混合型多元贝叶斯稀疏可变选择,并进行收缩先验

Two-Step Mixed-Type Multivariate Bayesian Sparse Variable Selection with Shrinkage Priors

论文作者

Wang, Shao-Hsuan, Bai, Ray, Huang, Hsin-Hsiung

论文摘要

我们引入了使用连续收缩先验的混合型多元回归的贝叶斯框架。我们的框架可以对混合连续和离散结果进行联合分析,并促进$ p $协变量的变量选择。贝叶斯混合型多变量响应模型的理论研究先前尚未进行,并且由于响应之间的相关性,与单变量响应模型相应的理论需要更多的复杂参数。在本文中,当$ p $增长的速度比样本量$ n $快时,我们调查了方法的后置收缩的必要条件。现有的有关贝叶斯高维渐近学的文献仅集中在$ p $以$ n $逐个指数增长的情况下。相比之下,我们研究了渐近制度,其中允许$ p $以$ n $而成倍增长。我们开发了一种新型的两步方法,用于可变选择,该方法具有确定的筛选属性,即使在$ p $的指数级增长下,也可以证明可以实现后部收缩。我们通过模拟研究和对真实数据的应用来证明方法的实用性,包括$ n = 174 $和$ p = 9183 $的癌症基因组学数据集。实现我们方法的R代码可在https://github.com/raybai07/mtmbsp上获得。

We introduce a Bayesian framework for mixed-type multivariate regression using continuous shrinkage priors. Our framework enables joint analysis of mixed continuous and discrete outcomes and facilitates variable selection from the $p$ covariates. Theoretical studies of Bayesian mixed-type multivariate response models have not been conducted previously and require more intricate arguments than the corresponding theory for univariate response models due to the correlations between the responses. In this paper, we investigate necessary and sufficient conditions for posterior contraction of our method when $p$ grows faster than sample size $n$. The existing literature on Bayesian high-dimensional asymptotics has focused only on cases where $p$ grows subexponentially with $n$. In contrast, we study the asymptotic regime where $p$ is allowed to grow exponentially in terms of $n$. We develop a novel two-step approach for variable selection which possesses the sure screening property and provably achieves posterior contraction even under exponential growth of $p$. We demonstrate the utility of our method through simulation studies and applications to real data, including a cancer genomics dataset where $n=174$ and $p=9183$. The R code to implement our method is available at https://github.com/raybai07/MtMBSP.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源