论文标题

通过使用分化技术的集成来扩展Stein的引理的扩展

Extension of Stein's lemma derived by using an integration by differentiation technique

论文作者

Mamis, Konstantinos

论文摘要

我们将Stein的引理扩展到平均值,该平均值明确包含电源的高斯随机变量。我们为斯坦因引理的这一扩展提供了两个证据,其中首先是数学诱导的严格证明。替代性的第二个证明是一个建设性的形式推导,其中我们表达了平均值,而不是作为积分,而是通过高斯瞬间产生函数定义的假差异操作员的作用。在扩展的Stein的引理中,出现了概率的Hermite多项式系数的绝对值,从而揭示了Hermite多项式和正态分布之间的另一个联系。

We extend Stein's lemma for averages that explicitly contain the Gaussian random variable at a power. We present two proofs for this extension of Stein's lemma, with the first being a rigorous proof by mathematical induction. The alternative, second proof is a constructive formal derivation in which we express the average not as an integral, but as the action of a pseudodifferential operator defined via the Gaussian moment-generating function. In extended Stein's lemma, the absolute values of the coefficients of the probabilist's Hermite polynomials appear, revealing yet another link between Hermite polynomials and normal distribution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源