论文标题

莫特(Mott)的介电灾难和Moiré超级晶格中的Wigner Transition

Dielectric catastrophe at the Mott and Wigner transitions in a moiré superlattice

论文作者

Tang, Yanhao, Gu, Jie, Liu, Song, Watanabe, Kenji, Taniguchi, Takashi, Hone, James C., Mak, Kin Fai, Shan, Jie

论文摘要

由电子相关驱动的金属 - 绝缘体过渡(MIT)是凝结物理学的一个基本且具有挑战性的问题。特别是,这种过渡是否可以连续保持开放。具有连续可调的带宽的半导体Moiré材料的出现为研究相互作用驱动的MIT提供了理想的平台。尽管最近有报道称,在固定的Moiré超级晶格的固定全电子填充处进行带宽调整的MIT,但在涉及基础超晶格的翻译对称性破坏的分数填充物上仍然难以捉摸。在这里,我们使用激子传感技术在整数和分数填充物上的mose2/ws2moiré超晶格中展示了带宽调整的mit。带宽由平面外电场控制。用远程WSE2传感器层中的2S激子光学探测介电响应。对于金属状态,激子光谱重量可以忽略不计,与大型负电介质常数一致。当从绝缘侧接近过渡时,它不断消失,对应于发散的介电常数或“介电灾难”。我们的结果支持在二维三角晶格中连续相互作用驱动的MIT,并刺激其替代性中外来量子相(例如量子自旋液体)的未来探索。

The metal-insulator transition (MIT) driven by electronic correlations is a fundamental and challenging problem in condensed-matter physics. Particularly, whether such a transition can be continuous remains open. The emergence of semiconducting moiré materials with continuously tunable bandwidth provides an ideal platform to study interaction-driven MITs. Although a bandwidth-tuned MIT at fixed full electron filling of the moiré superlattice has been reported recently, that at fractional filling, which involves translational symmetry breaking of the underlying superlattice, remains elusive. Here, we demonstrate bandwidth-tuned MITs in a MoSe2/WS2 moiré superlattice at both integer and fractional fillings using the exciton sensing technique. The bandwidth is controlled by an out-of-plane electric field. The dielectric response is probed optically with the 2s exciton in a remote WSe2 sensor layer. The exciton spectral weight is negligible for the metallic state, consistent with a large negative dielectric constant. It continuously vanishes when the transition is approached from the insulating side, corresponding to a diverging dielectric constant or a "dielectric catastrophe". Our results support continuous interaction-driven MITs in a two-dimensional triangular lattice and stimulate future explorations of exotic quantum phases, such as quantum spin liquids, in their vicinities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源